INDIAN SCHOOL AL WADI AL KABIR

Midterm Examination 2023-24
 SUB: Mathematics - Set 2

Date: 21/09/2023
Class: X

Time Allowed :3 hours
Maximum Marks: 80

General Instructions:

1. This Question Paper has 5 Sections A, B, C, D, and E.
2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.
3. Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.
4. Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.
5. Section D has 4 Long Answer (LA) type questions carrying 5 marks each.
6. Section E has 3 Case Based integrated units of assessment (4 marks each) with sub-parts of the values of 1,1 and 2 marks each respectively.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
8. Draw neat figures wherever required.

SECTION A

Section A consists of $\mathbf{2 0}$ questions of 1 mark each.

1	The value(s) of x, if the distance between the points $A(0,0)$ and $B(x,-4)$ is 5 units is:							
	(A)	± 4	(B)	± 3	(C)	± 2	(D)	± 1
2	In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \frac{A B}{D E}=\frac{B C}{F D}$. Which of the following makes the two triangles similar?							
			$=\angle$		(B)	$\angle B=\angle D$		
			$B=\angle \mathrm{E}$		(D)	$\angle \mathrm{A}=\angle \mathrm{F}$		
3	M and N are positive integers such that $M=p^{2} q^{3} r$ and $N=p^{3} q^{2}$, where p, q and r are prime numbers. The $\mathrm{HCF}(\mathrm{M}, \mathrm{N})$ is:							

10	If one root of the equation $2 x^{2}-5 x+(t-4)=0$ be the reciprocal of the other, then the value of t is: (A) 5 (B) 4 (C) 6 (D) 8	
11	If the mean and the median of a data are 12 and 15 respectively, then its mode is: (A) 13.5 (B) 21 (C) (D) 14	
12	If $A B$ is a chord of a circle with centre at $O(2,3)$, where the coordinates of A and B are $(4,3)$ and $(x, 5)$ respectively, then the value of x is : (A) 3 (B) 2 (C) 5 (D) 4	
13	Harsh correctly solved a pair of linear equations in two variables and found their only point of intersection as $(3,-2)$. One of the lines was $x-y=5$. Which of the following could have been the other line? I: $3 x-3 y=15$ II: $2 x-3 y=12$ III: $2 x-3 y=14$ (A) Only I (B) Only II (C) Only I and II (D) Only II and III	
14	In the given figure, $\mathrm{AB} \\| \mathrm{PQ}$. If $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{PQ}=2 \mathrm{~cm}$ and $\mathrm{OB}=3 \mathrm{~cm}$, then the length of OP is: (A) 9 cm (B) 3 cm (C) 4 cm (D) 1 cm	

15	Which of the following is a quadratic polynomial with zeroes $\frac{5}{3}$ and 0 ? (A) $\quad 3 x(3 x-5)$ (B) $\quad 3 x(x-5)$ (C) $x^{2}-\frac{5}{3}$ (D) $\quad \frac{5}{3} x^{2}$	
16	If $\mathrm{p}^{2}=\frac{32}{50}$, then p is/an a : (A) whole number (B) integer (C) rational (D) irrational	
17	If the HCF of 360 and 64 is 8 , then their LCM is: (A) 2480 (B) 2780 (C) 512 (D) 2880	
18	$\left(\sec ^{2} \theta-1\right)\left(1-\operatorname{cosec}^{2} \theta\right)$ is equal to: (A) 1 (B) -1 (C) 2 (D) -2	
	Direction for questions 19 \& 20: In question numbers 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.	
19	Assertion(A): The number 5^{n} cannot end with the digit 0 , where n is a natural number. Reason(R): Prime factorisation of 5 has only two factors, 1 and 5.	
20	$\operatorname{Assertion(A):~If~in~a~} \triangle \mathrm{ABC}$, a line $\mathrm{DE} \\| \mathrm{BC}$ intersects AB in D and AC in E , then $\frac{A B}{A D}=\frac{A C}{A E}$ Reason(R): If a line is drawn parallel to one side of a triangle intersecting the other two sides in distinct points, then the other two sides are divided in the same ratio.	

	SECTION B							
	Section B consists of 5 questions of 2 marks each.							
21	Points $A(3,1), B(5,1), C(a, b)$ and $D(4,3)$ are vertices of a parallelogram $A B C D$. Find the values of a and b. OR Points P and Q trisect the line segment joining the points $A(-2,0)$ and $B(0,8)$ such that P is near to A . Find the coordinates of points P and Q .							
22	If $\cos (A-B)=\frac{\sqrt{3}}{2}$ and $\sin (A+B)=\frac{\sqrt{3}}{2}$, find A and B where $(A+B)$ and $(A-B)$ are acute angles.							
23	Write a quadratic polynomial whose zeroes are $(3+2 \sqrt{2})$ and $(3-2 \sqrt{2})$. OR If one zero of the polynomial $2 x^{2}+3 x+m$ is $\frac{1}{2}$, find the value of m and the other zero.							
24	In the following cumulative frequency table, find the values of $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d}.							
	Class	0-10	10-20		20-30		30-40	40-50
	Frequency	5	7		a		5	b
	Cumulative frequency	5	c		18		d	30
	If the mean of	followin	tribution is	OR	the va	lue of		
	Class	2-4	4-6	6-8		8-10	10-12	12-14
	Frequency	6	8	15		p	8	4
25	For what valu have an infin	k , does mber of	stem of line $(k-1)$ ions?	equ $+3 y$ $+(k+2$	ions 7) $y=$			

	SECTION C
	Section C consists of 6 questions of 3 marks each.
26	If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that the other two sides are divided in the same ratio. OR In the given figure $\frac{P S}{S Q}=\frac{P T}{T R}$ and $\angle P S T=\angle P R Q$. Prove that $\triangle \mathrm{PQR}$ is an isosceles triangle.
27	If $\tan \theta=\frac{3}{4}$, find the value of $\left(\frac{1-\cos ^{2} \theta}{1+\cos ^{2} \theta}\right)$
28	Arvind owns a dry fruits store. He sells cashew nuts at ₹ $600 / \mathrm{kg}$ and pistachio nuts at ₹ $750 / \mathrm{kg}$. A customer asks for a mixture of cashew nuts and pistachio nuts with the following conditions. - Both the items should together weigh $\frac{1}{2} \mathrm{~kg}$. - Both the items should together cost ₹ 360 . (i)If Arvind packs $\mathbf{x} \mathrm{kg}$ of cashew nuts and y kg of pistachio nuts for the customer, frame the equations that represent the given context. (ii) Find the weight of cashew nuts and pistachio nuts that Arvind packed for the customer. OR If $217 x+131 y=913 ;$ $131 x+217 y=827$, then solve the equations for the values of x and y.

29	The distribution below gives the weights of 30 students of a class. Find the median weight of a student.							
	Weight (in kg)	40-45	45-50	50-55	55-60	60-65	65-70	70-75
	No. of students	2	3	8	6	6	3	2
30	Find the zeroes of the quadratic polynomial $6 x^{2}+x-12$ and verify the relationship between the zeroes and the coefficients of the polynomial.							
31	Prove that $2-3 \sqrt{5}$ is an irrational number, given that $\sqrt{5}$ is an irrational number.							
	SECTION D							
	Section D consists of 4 questions of 5 marks each.							
32	Solve the following pair of equations graphically: $3 x+y-5=0 ; 2 x-y-5=0$ Find the area of the triangle formed by these two lines and Y axis.							
33	Find the ratio in which the y-axis divides the line segment joining the points $(-1,-4)$ and (5, -6). Also find the coordinates of the point of intersection. OR The vertices of quadrilateral ABCD are $\mathrm{A}(5,-1), \mathrm{B}(8,3), \mathrm{C}(4,0)$ and $\mathrm{D}(1,-4)$. Prove that ABCD is a rhombus and find the area of the rhombus.							
34	A survey regarding the heights (in cm) of 50 girls of class X of a school was conducted and the following data was obtained:							
	Height(cm)			30-140	140-150			60-170
	No. of girls			8	12			8
	Find the mean and mode of the data.							

35 Evaluate the following: $\quad \begin{array}{ll} & \frac{2 \cos ^{2} 60^{\circ}+3 \sec ^{2} 30^{\circ}-2 \tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}}\end{array}$

OR

Prove that:

$$
(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta
$$

SECTION E

Case Study -1

Jagdish has a field which is in the shape of a right-angled triangle AQC. He wants to leave a space in the form of a square PQRS inside the field for growing wheat and the remaining for growing vegetables (as shown in the figure). In the field, there is a pole marked as O .

Based on the above information answer the following questions.

I	Taking O as origin, coordinates of P are $(-200,0)$ and of Q are (200, 0$).$ PQRS being a square, what are the coordinates of R and S?	1 m
II	If S divides CA in the ratio k:1, what is the value of k, where point A is $(200,800) ?$	1 m
III	What is the area of square PQRS? What is the length of diagonal PR in square PQRS?	2 m

Case Study - 2

February 14 is celebrated as International Book Giving Day and many countries in the world celebrate this day. Some people in India also started celebrating this day and donated the following number of books of various subjects to a public library:

History $=96$, Science $=240$, Mathematics $=336$.
These books have to be arranged in minimum number of stacks such that each stack contains books of only one subject and the number of books on each stack is the same.

Based on the above information answer the following questions.

I	How many books are arranged in each stack?	1 m
II	How many stacks are used to arrange all the Mathematics books?	1 m
III	Determine the total number of stacks that will be used for arranging all the books. If the thickness of each book of History, Science and Mathematics is $1.8 \mathrm{~cm}, 2 \cdot 2 \mathrm{~cm}$ and $2 \cdot 5 \mathrm{~cm}$ respectively, then find the height of each stack of History, Science and Mathematics books.	2 m

38 \begin{tabular}{ll}
Case Study $\mathbf{- 3}$

Ramesh places a mirror on level ground to determine the height of a pole (with traffic light

fired on it). He stands at a certain distance so that he can see the top of the pole reflected from

the mirror. Ramesh's eye level is 1.8 m above the ground.

The distance of Ramesh from mirror and that of building from mirror are 1.5 m and 5 m

respectively.

Based on the above information answer the following questions.

\hline II \& | Name the similar triangles from the figure. |
| :--- |
| II |
| Which similarity criterion is applied here? |

\hline Find height of the pole.

Now Ramesh move behind such that distance between pole and

Ramesh is 13 meters. He places mirror between him and pole to see

the reflection of light in right position. What is the distance between

mirror and Ramesh?
\end{tabular}

Date: 21/09/2023 Class: X		Marking Scheme	Time Allowed :3 hours Maximum Marks: 80
SECTION A			
1	(B) ± 3		
2	(B) $\angle \mathrm{B}=\angle \mathrm{D}$		
3	(C) $\mathrm{p}^{2} \mathrm{q}^{2}$		
4	(B) $\frac{37}{4}$		
5	(A) $\sqrt{3}$		
6	(C) 30		
7	(A) intersecting	one point	
8	(B) $\frac{1}{\sqrt{10}}$		
9	(C) 54 cm		
10	(C) 6		
11	(B) 21		
12	(B) 2		
13	(B) Only II		
14	(D) 1 cm		
15	(A) $3 x(3 x-5)$		
16	(C) rational nu		

17	(D) 2880
18	(B) -1
19	(c) Assertion (A) is true and reason (R) is false.
20	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
	SECTION B
21	Diagonals of parallelogram bisect each other $\begin{aligned} \therefore \quad & \left(\frac{3+a}{2}, \frac{1+b}{2}\right)=\left(\frac{5+4}{2}, \frac{1+3}{2}\right) \\ & 3+a=9,1+b=4 \end{aligned}$ So $\quad a=6, b=3$ OR P divides AB in the ratio 1:2 \therefore Coordinates of P are $\left(\frac{0-4}{3}, \frac{8+0}{2}\right)=\left(\frac{-4}{3}, \frac{8}{3}\right)$ Q divides $A B$ in the ratio 2:1 \therefore Coordinates of Q are $\left(\frac{0-2}{3}, \frac{16+0}{3}\right)=\left(\frac{-2}{3}, \frac{16}{3}\right)$
22	$\begin{aligned} & \cos (A-B)=\frac{\sqrt{3}}{2} \Rightarrow A-B=30^{\circ} \\ & \sin (A+B)=\frac{\sqrt{3}}{2} \Rightarrow A+B=60^{\circ} \\ & 2 A=90^{\circ} \Rightarrow A=45^{\circ} \\ & B=15^{\circ} \end{aligned}$
23	Sum of the zeroes $=6$, Product of the zeroes $=1$ OR

26	For correct given, To prove, Construction and figure For correct proof OR Given : $\frac{P S}{S Q}=\frac{P T}{T R}$ $\angle \mathrm{PST}=\angle \mathrm{PRQ}$ To prove : PQR is isosceles triangle Proof: $\frac{P S}{S Q}=\frac{P T}{T R}$ By converse of B.P.T. We get $S T \\| Q R$ $\angle \mathrm{PST}=\angle \mathrm{PQR}$ (corresponding angles) $\angle \mathrm{PST}=\angle \mathrm{PRQ}$ (given) $\Rightarrow \angle \mathrm{PQR}=\angle \mathrm{PRQ}$ So $\triangle P Q R$ is isosceles triangle	($1^{1 / 2} \mathrm{~m}$) ($11 / 2 \mathrm{~m}$) $1 / 2 \mathrm{~m}$ 1 m 1 m $1 / 2 \mathrm{~m}$
27	$\begin{aligned} & \sec ^{2} \theta=1+\frac{9}{16}=\frac{25}{16} \\ & \therefore \cos ^{2} \theta=\frac{16}{25} \end{aligned}$ Hence $\frac{1-\cos ^{2} \theta}{1+\cos ^{2} \theta}=\frac{1-\frac{16}{25}}{1+\frac{16}{25}}=\frac{9}{41}$	1 m $1 / 2 \mathrm{~m}$ $11 / 2 \mathrm{~m}$
28	$\begin{aligned} & \text { (i) } \begin{array}{l} x+y=0.5 \\ 600 x+750 y=360 / 20 x+25 y=12 \\ \text { (ii) } 20 x+20 y=10 \\ 20 x+25 y=12 \\ -5 y=-2 \longrightarrow y=2 / 5 \\ \\ x=1 / 10 \\ \\ \text { Weight of cashew nuts }=0.1 \mathrm{~kg}=100 \mathrm{~g} \\ \\ \text { Weight of pistachio nuts }=0.4 \mathrm{~kg}=400 \mathrm{~g} \\ \text { OR } \end{array} \\ & 217 x+131 \mathrm{y}=913 ; \end{aligned}$	1 m $1 / 2 \mathrm{~m}$

	$131 x+217 y=827$ Adding, $348 \mathrm{x}+348 \mathrm{y}=1740, \mathrm{x}+\mathrm{y}=5$ Subtracting, $86 x-86 y=86, x-y=1$ $x=3, y=2$	$\begin{aligned} & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \end{aligned}$
29	Weight (in kg) No. of Students $\mathrm{Cu.Fr}$. $40-45$ 2 2 $45-50$ 3 5 $50-55$ 8 13 $55-60$ 6 19 $60-65$ 6 25 $65-70$ 3 28 $70-75$ 2 30 30 Median class $=55.60$ $\begin{aligned} & \text { Median }=1+\frac{\frac{\mathrm{n}}{2}-\mathrm{C} . \mathrm{F}}{\mathrm{f}} \times \mathrm{h} \\ & \text { Median }=55+\frac{15-13}{6} \times 5=56.67 \mathrm{~kg} \end{aligned}$	1 m $1 / 2 \mathrm{~m}$ $11 / 2 \mathrm{~m}$
30	$\begin{aligned} & 6 x^{2}+x-12 \\ & \mathrm{a}=6, \mathrm{~b}=1, \mathrm{c}=-12 \\ & \text { Sum }=1, \text { Pdt }=.-72 \\ & 6 x^{2}+9 x-8 x-12=3 x(2 x+3)-4(2 x+3)=0 \\ & (3 x-4)(2 x+3)=0 \\ & x=4 / 3, x=-3 / 2 \quad \text { Let } \alpha=4 / 3, \beta=-3 / 2 \\ & \alpha+\beta=4 / 3+-3 / 2=-1 / 6=-b / a \\ & \alpha \beta=4 / 3 \times-3 / 2=-2=c / a \end{aligned}$	1 m 1 m 1 m

$$
\begin{aligned}
y & =\frac{k(-6)+1(-4)}{k+1} \\
& =\frac{\frac{1}{5}(-6)+1(-4)}{\frac{1}{6}+1} \\
& =\frac{-26}{6}=\frac{-13}{3}
\end{aligned}
$$

Hence, value of k is $\frac{1}{5}$ and required point is $\left(0,-\frac{13}{3}\right)$

OR

The vertices of the quadrilateral $A B C D$ are
$A(5,-1), B(8,3), C(4,0) D(1,-4)$.
Now

$$
\begin{aligned}
A B & =\sqrt{(8-5)^{2}+(3+1)^{2}} \\
& =\sqrt{3^{2}+4^{2}}=5 \text { units } \\
B C & =\sqrt{(8-4)^{2}+(3-0)^{2}} \\
& =\sqrt{4^{2}+3^{2}}=5 \text { unite } \\
C D & =\sqrt{(4-1)^{2}+(0+4)^{2}} \\
& =\sqrt{(3)^{2}+(4)^{2}}=5 \text { units } \\
A D & =\sqrt{(5-1)^{2}+(-1+4)^{2}} \\
& =\sqrt{(4)^{2}+(3)^{2}}=5 \text { units }
\end{aligned}
$$

Finding the sides 3 m

Finding diagonals 1 m

Area 1m

Diagonal, $\quad A C=\sqrt{(5-4)^{2}+(-1-0)^{2}}$

$$
=\sqrt{1^{2}+1^{2}}=\sqrt{2} \text { units }
$$

Diagonal

$$
\begin{aligned}
B D & =\sqrt{(8-1)^{2}+(3+4)^{2}} \\
& =\sqrt{(7)^{2}+(7)^{2}}=7 \sqrt{2} \text { unito }
\end{aligned}
$$

Area $=1 / 2 \times$ product of the diagonals
$=1 / 2 \times \sqrt{2} \times 7 \sqrt{2}$
$=7$ sq. units

As the length of all the sides are equal but the length of the diagonals are not equal. Thus $A B C D$ is not square but a rhombus.

34	Height (cm) 120-130	No. of girls 2	$\begin{aligned} & x_{i}(1 \mathrm{~m}) \\ & \hline 125 \end{aligned}$	$f_{i} x_{i}(1 \mathrm{~m})$$250$		
	130-140	8	135	1080		
	140-150	12	145	1740		
	150-160	20	155	3100		
	160-170	8	165	1320		
		50		7490		
	$\begin{align*} & \text { Mode }=\ell+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h(1 / 2 \mathrm{~m}) \\ & =150+\left(\frac{20-12}{2 \times 20-12-8}\right) \times 10 \quad(1 \mathrm{~m}) \tag{1m}\\ & =150+\frac{80}{20}=154 \quad(1 / 2 \mathrm{~m}) \tag{1/2m} \end{align*}$					$=149.8 \mathrm{~cm}(1 \mathrm{~m})$
35	$\begin{gathered} \frac{2 \cos ^{2} 60^{\circ}+3 \sec ^{2} 30^{\circ}-2 \tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}}=\frac{2\left(\frac{1}{2}\right)^{2}+3\left(\frac{2}{\sqrt{3}}\right)^{2}-2(1)^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}} \\ =\frac{2\left(\frac{1}{2}\right)^{2}+3\left(\frac{2}{\sqrt{3}}\right)^{2}-2(1)^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}} \\ =\frac{\frac{2}{4}+4-2}{\frac{1}{4}+\frac{1}{2}}=\frac{10}{3} \end{gathered}$					$21 / 2 \mathrm{~m}$ $2 \mathrm{~m}$ $1 / 2 \mathrm{~m}$

38	Case Study -3		
	I	$\Delta \mathrm{ABM} \sim \Delta \mathrm{CDM}$	1 m
	II	AA similarity	1 m
	III	Height of the pole $\begin{gathered} \frac{A B}{C D}=\frac{B M}{D M} \\ \frac{A B}{5}=\frac{1.8}{1.5} \quad \mathrm{AB}=6 \mathrm{~m} \\ \text { OR } \\ \frac{6}{13-x}=\frac{1.8}{x} \\ x=3 \mathrm{~m} \quad \text { Distance between mirror and Ramesh is } 3 \mathrm{~m} . \end{gathered}$	1 m 1 m 1 m 1 m

