

INDIAN SCHOOL AL WADI AL KABIR

Midterm Examination 2023-24

SUB: Mathematics - Set 2

Date: 21/09/2023 Time Allowed: 3 hours

Maximum Marks: 80 Class: X

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D, and E.
- 2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.
- 3. Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.
- 4. Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.
- 5. Section D has 4 Long Answer (LA) type questions carrying 5 marks each.
- 6. Section E has 3 Case Based integrated units of assessment (4 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

8. Dr	8. Draw neat figures wherever required.									
	SECTION A									
	Section A consists of 20 questions of 1 mark each.									
1	The value(s) of x, if the distance between the points $A(0, 0)$ and $B(x, -4)$ is 5 units is:									
	(A)	<u>±</u> 4	(B)	<u>±</u> 3	(C)	<u>±</u> 2	(D)	<u>±</u> 1		
2	In \triangle ABC and \triangle DEF, $\frac{AB}{DE} = \frac{BC}{FD}$. Which of the following makes the two triangles similar?									
	(A)		$\angle A = \angle D$		(B)		$\angle B = \angle D$			
	(C)		$\angle B = \angle E$		(D)		$\angle A = \angle F$			
3	M and N	I are positive	integers suc	ch that $M = I$	o^2q^3r and N	$= p^3q^2, w$	nere p, q ar	nd r are prime		
	numbers. The HCF (M, N) is:									
	(A)	p^3q^3r	(B)	p^3q^3	(C)	p^2q^2	(D)	pqr		

4	If α and β a	are the z	zeroes of the p	polynomial p(x)	$=2x^2-7x+$	- 3, then the	he value of	$\alpha^2 + \beta^2$ is:
	(A)	10	(B)	$\frac{37}{4}$	(C)	$\frac{23}{2}$	(D)	37
5	If $\sin A = \frac{2}{3}$	$\frac{1}{2}$, then	the value of c	ot A is:				
	(A)	$\sqrt{3}$	(B)	$\frac{1}{\sqrt{3}}$	(C)	$\frac{\sqrt{3}}{2}$	(D)	1
6	Consider th	he follo	wing distribut	ion:				
	Classes		0-5	5-10	10-15		15-20	20-25
	Frequency	y	10	15	12		20	9
	The sum of	f the lov	wer limit of th	e modal class ar	nd upper lin	nit of med	lian class is	:
	(A)	20	(B)	25	(C)	30	(D)	35
7	Graphically which are:	_	air of equation	s: $-6x - 2y = 2$	21 and 2x - 3	3y + 7 = 0	represents	two lines
	(A)	interse	ecting exactly	at one point	(B)	intersect	ing exactly	at two points
	(C)		coincider	nt	(D)		paralle	1
8	Two legs A	AB and	BC of right tr	iangle ABC are	in the ratio	1:3. The	value of sin	C is:
	(A)	$\sqrt{10}$	(B)	$\frac{1}{\sqrt{10}}$	(C)	$\frac{3}{\sqrt{10}}$	(D)	$\frac{1}{2}$
9	staircase. T	There ar		at fits under her		y cm	2y cm	
	in the figur	re.			144 cm		2y c	m
		-		s 144 cm. What				3y cm
			_	k that can stand		Book		
	upright on	the bot	tom – most sh	elf.?		lan.		
	(A)	18 cm	(B)	36 cm	(C)	54 cm	(D)	86.4 cm

10	If one root of the equation $2x^2 - 5x + (t - 4) = 0$ be the reciprocal of the other, then the value of t is:									
	(A)	5	(B)	4	(C)	6	(D)	8		
11	If the me	an and the me	edian of a d	ata are 12 and	15 respectiv	vely, then it	s mode i	s:		
	(A)	13.5	(B)	21	(C)	6	(D)	14		
12	If AB is a	a chord of a c	ircle with co	entre at $O(2, 3)$, where the	coordinate	s of A ar	nd B are (4, 3)		
	and (x, 5)	respectively	, then the va	alue of x is:						
	(A)	3	(B)	2	(C)	5	(D)	4		
13	Harsh con	rrectly solved	a pair of li	near equations	in two vari	ables and fo	ound thei	r only point of		
	intersecti	on as (3, -2).	One of the	lines was x – y	= 5.					
	Which of	the following	g could hav	e been the othe	er line?					
	I: 3x – 3y	v = 15								
	II: 2x – 3	y = 12								
	III: 2x – 3	3y = 14								
			(D)	0.1 11	(6)	\ 1 T 1T	(D)			
	(A)	Only I	(B)	Only II		Only I and II		Only II and III		
14	In the givis:	en figure, AF	B∥ PQ. If A	AB = 6 cm, PQ	= 2 cm and	OB = 3cm	, then the	e length of OP		
	15.				В					
				7	/ P					
				//						
				A						
	(A)	9 cm	(B)	3 cm	(C)	4 cm	(D)	1cm		

15	Which of the following is a quadratic polynomial with zeroes $\frac{5}{3}$ and 0?							
	(A)	3x(3x-5)	(B)	3x(x-5)	(C)	$x^2 - \frac{5}{3}$	(D)	$\frac{5}{3}$ x ²
16	If p ² =	$= \frac{32}{50}$, then p is/an a	ι:					
	(A)	whole number	(B)	integer	(C)	rational number	(D)	irrational number
17	If the	HCF of 360 and 6	4 is 8, th	en their LCM is	:			
	(A)	2480	(B)	2780	(C)	512	(D)	2880
18	(sec ² 6	θ -1) (1- $\csc^2 \theta$) i	s equal t	o:				
	(A)	1	(B)	-1	(C)	2	(D)	-2
	Direc	tion for questions	s 19 & 20	0: In question nu	ımbers 19	and 20, a sta	atement o	f Assertion (A)
	is foll	owed by a stateme	ent of Re	ason (R) Choos	e the corre	ect ontion		
	15 1011	owed by a stateme	in or ice	ason (IC). Choos	e the conv	cet option.		
	(a) Bo	oth assertion (A) as	nd reason	n (R) are true and	d reason (R) is the corr	rect expla	nation of
	assert	ion (A)						
	(b) Bo	oth assertion (A) a	nd reason	n (R) are true an	d reason (R) is not the	correct e	xplanation of
		ion (A)			· ·	. ,		1
	(c) As	ssertion (A) is true	but reas	on (R) is false.				
		ssertion (A) is fals						
	(4) 11	330111011 (71) 13 1413	- out reu					
19	Asser	tion(A): The num	ber 5 ⁿ ca	annot end with th	ne digit 0,	where n is a	natural n	umber.
	Reaso	on(R): Prime factor	orisation	of 5 has only tw	o factors	1 and 5		
	reas		<u> </u>			T und 3.		
20	Asser	rtion(A) : If in a Δ	ABC, a	line DE BC in	tersects A	B in D and A	AC in E, t	$hen \frac{AB}{AD} = \frac{AC}{AE}.$
	Reaso	on(R) : If a line is o	lrawn pa	rallel to one side	of a trian	ngle intersect	ing the ot	ther two sides
		tinct points, then the	_					
	111 015	and points, then the	ic other	eno sides die div	idea iii ui	io baino tano.	•	

		SECTION B							
		Section B consists of 5 questions of 2 marks each.							
21		Points A(3, 1), B(5, 1), C(a, b) and D(4, 3) are vertices of a parallelogram ABCD. Find the values of a and b.							
				OR					
		Points P and Q trisect the line segment joining the points $A(-2, 0)$ and $B(0, 8)$ such that P is near to A. Find the coordinates of points P and Q.							
22	If $cos(A - B)$ angles.	If $cos(A - B) = \frac{\sqrt{3}}{2}$ and $sin(A + B) = \frac{\sqrt{3}}{2}$, find A and B where $(A + B)$ and $(A - B)$ are acute angles.							
23	Write a quadratic polynomial whose zeroes are $(3 + 2\sqrt{2})$ and $(3 - 2\sqrt{2})$. OR								
	If one zero of the polynomial $2x^2 + 3x + m$ is $\frac{1}{2}$, find the value of m and the other zero.								
24	In the following	ng cumulative	e frequency ta	ble, find the v	values of a , b ,	c and d.			
	Class	0-10	10-2	0 20	0-30	30-40	40-50		
	Frequency	5	7		a	5	b		
	Cumulative frequency	5	c		18	d	30		
	If the mean of	the following	g distribution	OR is 7.5, find the	e value of p.				
	Class	2-4	4-6	6-8	8-10	10-12	12-14		
	Frequency	6	8	15	p	8	4		
25	For what value	e of k, does the	ne system of l	inear equation	ıs				
				2x + 3y = 7					
			(k-1)) x + (k + 2) y	y = 3k				
	have an infinit	te number of	solutions?						

	SECTION C
	Section C consists of 6 questions of 3 marks each.
26	If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that the other two sides are divided in the same ratio. OR
	In the given figure $\frac{PS}{SQ} = \frac{PT}{TR}$ and $\angle PST = \angle PRQ$. Prove that $\triangle PQR$ is an isosceles triangle.
27	If $\tan \theta = \frac{3}{4}$, find the value of $\left(\frac{1-\cos^2 \theta}{1+\cos^2 \theta}\right)$
28	Arvind owns a dry fruits store. He sells cashew nuts at ₹600/kg and pistachio nuts at ₹750/kg.
	A customer asks for a mixture of cashew nuts and pistachio nuts with the following conditions.
	■ Both the items should together weigh $\frac{1}{2}$ kg.
	■ Both the items should together cost ₹360.
	(i)If Arvind packs x kg of cashew nuts and y kg of pistachio nuts for the customer,
	frame the equations that represent the given context.
	(ii) Find the weight of cashew nuts and pistachio nuts that Arvind packed for the
	customer.
	OR
	If $217x + 131y = 913$;
	131x + 217y = 827, then solve the equations for the values of x and y.

	The distribution below gives the weights of 30 students of a class. Find the median weight of student.										
	Weight (in kg)	40-45	45-50	50-55	55-60	60-65	65-70	70-75			
	No. of students	2	3	8	6	6	3	2			
30	Find the zeroes of the quadratic polynomial $6x^2 + x - 12$ and verify the relationship between the zeroes and the coefficients of the polynomial.										
31	Prove that 2	$-3\sqrt{5}$ is an	irrational n	umber, give	n that $\sqrt{5}$ is	an irrational	number.				
				SECT	ION D						
		Sec	tion D con	sists of 4 qu	uestions of	5 marks e	ach.				
32	Solve the fol	llowing pair	of equation	ns graphicall	y: 3x + y - 5	= 0; 2x - y	- 5 = 0				
	Find the area	a of the tria	ngle formed	by these tw	o lines and Y	axis.					
33	Find the rat	io in which	the y -axis o	divides the li	ne segment	joining the p	points (-1, -4	4) and			
	(5, -6). Also	find the co	ordinates of	the point of	intersection	•					
				O	R						
	The vertices	of quadrila	teral ABCD	are A(5, - 1), B(8, 3), C	$(4,0)$ and Γ	0(1, -4).				
	Prove that A	BCD is a rl	nombus and	find the area	a of the rhon	nbus.					
24	A survey reg	garding the	heights (in c	cm) of 50 gir	ls of class X	of a school	was conduc	cted and the			
34	following data was obtained:										
34	Tollowing da		Height(cm) 120-130 130-140 140-150 150-160 160-170								
34		120-	-130	130-140	140-150	150-	-160	160-170			

35 Evaluate the following:

$$\frac{2\cos^2 60^{\circ} + 3\sec^2 30^{\circ} - 2\tan^2 45^{\circ}}{\sin^2 30^{\circ} + \cos^2 45^{\circ}}$$

OR

Prove that:

$$(\sin\theta + \csc\theta)^{2} + (\cos\theta + \sec\theta)^{2} = 7 + \tan^{2}\theta + \cot^{2}\theta$$

SECTION E

Case Study Based Questions are compulsory.

36 Case Study -1

Jagdish has a field which is in the shape of a right-angled triangle AQC. He wants to leave a space in the form of a square PQRS inside the field for growing wheat and the remaining for growing vegetables (as shown in the figure). In the field, there is a pole marked as O.

Based on the above information answer the following questions.

	What is the length of diagonal PR in square PQRS?	
	OR	
III	What is the area of square PQRS?	2m
	(200, 800)?	
II	If S divides CA in the ratio k:1, what is the value of k, where point A is	1m
	PQRS being a square, what are the coordinates of R and S?	
I	Taking O as origin, coordinates of P are (-200, 0) and of Q are (200, 0).	1m

Case Study - 2

February 14 is celebrated as International Book Giving Day and many countries in the world celebrate this day. Some people in India also started celebrating this day and donated the following number of books of various subjects to a public library:

History = 96, Science = 240, Mathematics = 336.

These books have to be arranged in minimum number of stacks such that each stack contains books of only one subject and the number of books on each stack is the same.

Based on the above information answer the following questions.

I	How many books are arranged in each stack?	1m
II	How many stacks are used to arrange all the Mathematics books?	1m
III	Determine the total number of stacks that will be used for	2m
	arranging all the books.	
	OR	
	If the thickness of each book of History, Science and Mathematics is	
	1.8 cm, 2.2 cm and $2.5 cm$ respectively, then find the height of each	
	stack of History, Science and Mathematics books.	

Case Study -3

Ramesh places a mirror on level ground to determine the height of a pole (with traffic light fired on it). He stands at a certain distance so that he can see the top of the pole reflected from the mirror. Ramesh's eye level is 1.8 m above the ground.

The distance of Ramesh from mirror and that of building from mirror are 1.5 m and 5 m respectively.

Based on the above information answer the following questions.

Ι	Name the similar triangles from the figure.	1m
II	Which similarity criterion is applied here?	1m
III	Find height of the pole.	2m
	OR	
	Now Ramesh move behind such that distance between pole and	
	Ramesh is 13 meters. He places mirror between him and pole to see	
	the reflection of light in right position. What is the distance between	
	mirror and Ramesh?	

INDIAN SCHOOL AL WADI AL KABIR

Midterm Examination 2023-24

SUB: Mathematics - Set 2

Date: 21/09/2023 Marking Scheme Time Allowed: 3 hours

Class: X Maximum Marks: 80

Crasi	
	SECTION A
1	(B) ± 3
2	$(\mathbf{B}) \angle \mathbf{B} = \angle \mathbf{D}$
3	(C) p^2q^2
4	$(\mathbf{B})\frac{37}{4}$
5	$(\mathbf{A})\sqrt{3}$
6	(C) 30
7	(A) intersecting exactly at one point
8	$(\mathbf{B}) \ \frac{1}{\sqrt{10}}$
9	(C) 54 cm
10	(C) 6
11	(B) 21
12	(B) 2
13	(B) Only II
14	(D) 1 cm
15	(A) $3x(3x-5)$
16	(C) rational number

17	(D) 2880	
18	(B) -1	
19	(c) Assertion (A) is true and reason (R) is false.	
20	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct	explanation of
	assertion (A)	
	SECTION B	
21	Diagonals of parallelogram bisect each other	
	$\therefore \left(\frac{3+a}{2}, \frac{1+b}{2}\right) = \left(\frac{5+4}{2}, \frac{1+3}{2}\right)$	
	221 237 237 70	1m
	3 + a = 9, $1 + b = 4$	¹⁄2 m
	So $a = 6, b = 3$	1/2m
	OR	
	P divides AB in the ratio 1:2	
	$ \begin{array}{c c} \hline A & P & Q & B \\ \hline (-2,0) & & & (0,8) \end{array} $ $ \therefore \text{ Coordinates of P are } \left(\frac{0-4}{3}, \frac{8+0}{2}\right) = \left(\frac{-4}{3}, \frac{8}{3}\right) $	1m
	Q divides AB in the ratio 2: 1	
	$\therefore \text{ Coordinates of Q are } \left(\frac{0-2}{3}, \frac{16+0}{3}\right) = \left(\frac{-2}{3}, \frac{1}{3}\right)$	$\left(\frac{16}{3}\right)$ 1m
22	$\cos (A - B) = \frac{\sqrt{3}}{2} \implies A - B = 30^{\circ}$	
	$\sin (A+B) = \frac{\sqrt{3}}{2} \implies A+B=60^{\circ}$	
	$2A = 90^{\circ} \Rightarrow A = 45^{\circ}$	
	B = 15°	
23	Sum of the zeroes = 6, Product of the zeroes = 1 Required polynomial is $x^2 - 6x + 1$	
	OR	

½ m
½ m
½ m
½ m

24 Class 0 - 1010-20 20-30 30-40 40-50 7 Frequency 5 5 $\mathbf{b} = \mathbf{7}$ a = 6d = 23Cumulative 5 c=1218 30 frequency

Table 1m

OR

 $(1/2m \times 4)$

Class	Frequency (f)	x	fx
2-4	6	3	18
4-6	8	5	40
6-8	15	7	105
8-10	p	9	9p
10-12	8	11	88
12-14	4	13	52
	41 + p		303 + 9p

Mean = $7.5 = \frac{303 + 9p}{41 + p} \implies p = 3$

For infinitely many solutions

$$\frac{2}{k-1} = \frac{3}{k+2} = \frac{7}{3k}$$

$$2k + 4 = 3k - 3;$$
 $9k = 7k + 14$
 $k = 7$ $k = 7$

Hence
$$k = 7$$

1 m ½ m

SECTION C

$$y = \frac{k(-6) + 1(-4)}{k+1}$$
$$= \frac{\frac{1}{6}(-6) + 1(-4)}{\frac{1}{6} + 1}$$
$$= \frac{-26}{6} = \frac{-13}{3}$$

1m

1m

½ m

Hence, value of k is $\frac{1}{5}$ and required point is $\left(0, -\frac{13}{3}\right)$

½ m

OR

The vertices of the quadrilateral ABCD are A(5, -1), B(8, 3), C(4, 0)D(1, -4).

$$AB = \sqrt{(8-5)^2 + (3+1)^2}$$

$$= \sqrt{3^2 + 4^2} = 5 \text{ units}$$

$$BC = \sqrt{(8-4)^2 + (3-0)^2}$$

$$= \sqrt{4^2 + 3^2} = 5 \text{ units}$$

$$CD = \sqrt{(4-1)^2 + (0+4)^2}$$

$$= \sqrt{(3)^2 + (4)^2} = 5 \text{ units}$$

$$AD = \sqrt{(5-1)^2 + (-1+4)^2}$$

Diagonal,
$$AC = \sqrt{(5-4)^2 + (-1-0)^2}$$

= $\sqrt{1^2 + 1^2} = \sqrt{2}$ units

$$BD = \sqrt{(8-1)^2 + (3+4)^2}$$
$$= \sqrt{(7)^2 + (7)^2} = 7\sqrt{2} \text{ units}$$

 $=\sqrt{(4)^2+(3)^2}=5$ units

As the length of all the sides are equal but the length of the diagonals are not equal. Thus ABCD is not square but a rhombus. Finding the sides 3m

Finding diagonals 1m

Area 1m

Area = $\frac{1}{2}$ × product of the diagonals

$$= \frac{1}{2} \times \sqrt{2} \times 7\sqrt{2}$$

= 7 sq. units

34	Height (cm)	No. of girls	x_i (1m)	$f_i x_i$ (1m)
	120-130	2	125	250
	130-140	8	135	1080
	140-150	12	145	1740
	150-160	20	155	3100
	160-170	8	165	1320
		50		7490

Mode =
$$\ell + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times \hbar(1/2m)$$

= $150 + \left(\frac{20 - 12}{2 \times 20 - 12 - 8}\right) \times 10$ (1m)
= $150 + \frac{80}{20} = 154$ (1/2m)

Mean =
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{7490}{50} = 149.8 \text{ cm (1m)}$$

$$\frac{2\cos^{2}60^{\circ} + 3\sec^{2}30^{\circ} - 2\tan^{2}45^{\circ}}{\sin^{2}30^{\circ} + \cos^{2}45^{\circ}} = \frac{2(\frac{1}{2})^{2} + 3(\frac{2}{\sqrt{3}})^{2} - 2(1)^{2}}{(\frac{1}{2})^{2} + (\frac{1}{\sqrt{2}})^{2}}$$

$$= \frac{2(\frac{1}{2})^{2} + 3(\frac{2}{\sqrt{3}})^{2} - 2(1)^{2}}{(\frac{1}{2})^{2} + (\frac{1}{\sqrt{2}})^{2}}$$

$$= \frac{\frac{2}{4} + 4 - 2}{\frac{1}{4} + \frac{1}{2}} = \frac{10}{3}$$

$$\frac{2 \frac{1}{2} m}{\frac{1}{2} m}$$

		OR			
		$\theta + \csc \theta)^{2} + (\cos \theta + \sec \theta)^{2}$ $\ln^{2}\theta + \csc^{2}\theta + 2\sin \theta \csc \theta + \cos^{2}\theta$	2 m		
	+ sec ²	$\theta + 2\cos\theta\sec\theta$			
	=(sin	$(1 + \cos^2\theta) + \csc^2\theta + 2 + \sec^2\theta + 2$	1 ½ m		
	= 1 +	$-(1+\cot^2\theta)+2+(1+\tan^2\theta)+2$	1m		
	= 7 +	$-\tan^2\theta + \cot^2\theta$ Hence Proved	½ m		
		SECTION E			
36	I	R(200, 400) and S(-200, 400)		1m	
	II	1		1m	
	III	PQ = 400units, QR = 400 units		1m	
		Area = $side \times side = 160000 sq.$ units		1m	
		OR			
		$PR = \sqrt{(-200 - 200)^2 + (0 - 400)^2}$		1m	
		$=\sqrt{(-400)^2 + (-400)^2} = \sqrt{320000} = 400\sqrt{2} \text{ sq. units}$		1m	
	I	HCF(96, 240, 336) = 48	1n	1	
	II	336/48 = 7	1n	1	
	III	No. of stacks = $\frac{96+240+336}{48} = 14$	1n 1n	n + n	
37		OR			
		Height of each stack of History books = $48 \times 1.8 = 86.4$ cm Height of each stack of Science books = $48 \times 2.2 = 105.6$ cm	1n ½		
		Height of each stack of Mathematics books = $48 \times 2.5 = 120$ cm	1/2	m	

88		
Case	Study -3	
I	$\Delta ABM \sim \Delta CDM$	1m
II	AA similarity	1m
III	Height of the pole	
	$\frac{AB}{CD} = \frac{BM}{DM}$	1m
	$\frac{AB}{5} = \frac{1.8}{1.5}$ AB = 6 m	1m
	OR	
	$\frac{6}{13-x} = \frac{1.8}{x}$	1m
	x = 3 m Distance between mirror and Ramesh is 3m.	1m